18 research outputs found

    Design and fabrication of electrostatic actuators with corrugated membranes for MEMS deformable mirror in space

    Get PDF
    A novel Microelectromechanical Systems (MEMS) deformable mirror (DM) technology for large, light weight, segmented space telescopes is being proposed. This technology is reported to provide an unprecedented imaging capability in a visible and near infrared spectral range. The MEMS-DM proposed in this paper consists of a continuous membrane mirror supported by electrostatic actuators with pixel-to-pixel spacing as small as 200 micrometer. An array of 4 X 4 electrostatic actuators for the DM has been successfully fabricated by a new membrane transfer technique. The fabricated actuator membrane has been characterized by using an optical surface profiler. The actuator shows a vertical deflection of 0.37 micrometer at 55 V. This device can also address requirements for smaller size and high resolution applications involving optical transmission through aberrating mediums such as imaging and optical communications through atmospheres, high resolution biometric retina signatures through the eye and endoscopic investigation of tissues and organs

    Method of producing an integral resonator sensor and case

    Get PDF
    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case

    Integral resonator gyroscope

    Get PDF
    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case

    Design and fabrication of electrostatic actuators with corrugated membranes for MEMS deformable mirror in space

    Get PDF
    A novel Microelectromechanical Systems (MEMS) deformable mirror (DM) technology for large, light weight, segmented space telescopes is being proposed. This technology is reported to provide an unprecedented imaging capability in a visible and near infrared spectral range. The MEMS-DM proposed in this paper consists of a continuous membrane mirror supported by electrostatic actuators with pixel-to-pixel spacing as small as 200 micrometer. An array of 4 X 4 electrostatic actuators for the DM has been successfully fabricated by a new membrane transfer technique. The fabricated actuator membrane has been characterized by using an optical surface profiler. The actuator shows a vertical deflection of 0.37 micrometer at 55 V. This device can also address requirements for smaller size and high resolution applications involving optical transmission through aberrating mediums such as imaging and optical communications through atmospheres, high resolution biometric retina signatures through the eye and endoscopic investigation of tissues and organs

    Multiple internal seal right micro-electro-mechanical system vacuum package

    Get PDF
    A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum package that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace

    Multiple internal seal ring micro-electro-mechanical system vacuum packaging method

    Get PDF
    A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum packaging method that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace

    A Wafer Transfer Technology for MEMS Adaptive Optics

    No full text
    Adaptive optics systems require the combination of several advanced technologies such as precision optics, wavefront sensors, deformable mirrors, and lasers with high-speed control systems. The deformable mirror with a continuous membrane is a key component of these systems. This paper describes a new technique for transferring an entire wafer-level silicon membrane from one substrate to another. This technology is developed for the fabrication of a compact deformable mirror with a continuous facet. A 1 (mu)m thick silicon membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers (i.e. wax, epoxy, or photoresist). Smaller or larger diameter membranes can also be transferred using this technique. The fabricated actuator membrane with an electrode gap of 1.5 (mu)m shows a vertical deflection of 0.37 (mu)m at 55 V

    >

    No full text
    corecore